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From Fraud Vulnerabilities and Threats to 
Fraud Avoidance and Tolerance

 

Lilien, Leszek; Bhargava, Akhil; Bhargava, Bharat 

Abstract— Fraud vulnerability and fraud threat 
assessments can improve the level of 
trustworthiness in computer systems by reducing 
fraud attacks. A deep knowledge of fraud 
vulnerabilities and fraud threats can be utilized to 
avoid/tolerate fraud attacks. A swindler is a 
legitimate user who intentionally benefits from the 
system or other users by deception. We describe 
an architecture for swindler detection consisting 
of four components. One of them runs the 
deceiving intention predictor algorithm to foresee 
fraudulent intentions. It is effective in uncovering 
different fraud attack strategies, from naive to 
smart ones 

Index Terms— Computer security, fraud, 
threats, trusted computing, vulnerabilities 

1   INTRODUCTION 
VER-GROWING dependence of our 
civilization on ubiquitous computer 
systems brings with it an increase in 

vulnerabilities and threats, including fraud 
vulnerabilities and fraud threats, 
experienced by individuals, systems, and 
enterprises. The need to ameliorate these 
negative side effects of information 
technology, ranging from accidental failures 
to terrorist security attacks, becomes more 
urgent every day. 

1.1   Basic Ideas and Terminology 

Vulnerability is defined as a flaw or 
weakness in system security procedures, 
design, implementation or internal controls 
that could be exercised (accidentally 
triggered or intentionally exploited), and

results in a penetration: a security breach or 
a violation of the security policy [34].  

We define threats against systems as 
entities that can cause security breaches 
[20, 34]. An attack is an intentional 
exploitation of vulnerabilities, and an 
accident is an inadvertent triggering of 
vulnerabilities. A threat by itself causes no 
harm.  To cause harm, its potentiality must 
materialize as an attack or an accident. 

Trust can be defined as a firm reliance on 
the integrity, ability, or character of a person 
or thing [36]. This definition extends trust to 
things.  

Fraud (a fraud attack) is a deception 
deliberately practiced in order to secure 
unfair or unlawful gain [36], or an intentional 
perversion of truth in order to induce another 
to part with something of value or to 
surrender a legal right [25]. Fraud attacks 
are  a special class of security attacks, 
defined by attacker’s goal of gaining a 
financial or other tangible reward.   

Entities (human or artificial) that commit 
fraud are known as fraudsters. They can be 
classified into two categories: impersonators 
and swindlers [11]. An impersonator is an 
illegitimate user who steals resources from 
victims, for instance by taking over their 
accounts. A swindler is a legitimate user 
who intentionally benefits from the system or 
other users by deception. For instance, she 
obtains legitimate accounts and uses the 
services without intention to pay the bills. 

We extend the notion of a fraudster to 
cover not only humans but also artificial 
entities (such as programs, computers, etc.).   

1.2   Related Work on Fraud 

Fraud detection systems are widely used 
in telecommunication, online transactions, 
computer and network security, and 
insurance. A taxonomy of computer fraud  is 
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presented by Vasius [37]. Many research 
efforts address fraud detection in 
telecommunications (e.g., [2, 13, 35]). 
Examples of other common fraud research 
address identity fraud [19], and fraud in e-
commerce and e-business [29, 24, 38]. Data 
mining [1, 12, 16], machine learning [14, 27], 
and statistical methods [13, 35] have been 
developed to detect fraud.  

Different fraud detection approaches 
include an adaptive rule-based detection 
framework for superimposition fraud [16], a 
neural network technique [13], solving the 
incompatible schema problem caused by 
sharing a distributed fraud-detection 
database [15]. 

Due to the skewed distribution of fraud, 
one challenge in fraud detection is a very 
high false alarm rate. Also several other 
criteria are used to evaluate performance of 
fraud detection engines. Receiver Operating 
Characteristics (ROC) [17, 25, 35] is a 
common one. Rosset et al. [31] use 
accuracy and fraud coverage as criteria. 

A cost-based metric can be used in 
commercial fraud detection systems [33]. 

Security techniques such as cryptography, 
separation of duty policies, biometric 
authentication, and state transition analysis 
can prevent fraud [21]. Also general 
techniques are applicable, e.g., use of 
adaptability [9, 16, 23]. 

Impersonators can be forestalled by 
utilizing cryptographic techniques that 
provide strong protection to users’ 
authentication information.  

The idea of separation of duty [20] may be 
applied to reduce the impact of a fraudster. 
An example of this idea is the Chinese wall 
policy arising in the commercial sector of 
consulting services is an example [11]. 

For more on related work cf. Reference 
[6]. 

2   TOWARDS TRUSTED COMPUTING 
In this and the following sections, we 

discuss one approach for reaching the goal 
of trusted computing. We proceed from 
analysis of fraud vulnerabilities, via fraud 
threats, and via providing fraud attacks to 
establishing an environment of mutual trust 
among human and technological entities 
involved in computing, thus providing a 

trustworthy  computing environment. 
We concentrate on the integrity aspects of 

security (pretty much ignoring the other two 
elements of classically defined security: 
availability and confidentiality) [18, 30].  

3   FUNDAMENTAL PRINCIPLES 
We start by presenting the fundamental 

principles of our approach. We propose that 
the following principles be employed for 
creating integrity-improving algorithms or 
procedures, methods and methodologies: 

1. Apply research principles from the areas 
of reliability, integrity and fault tolerance 
[5, 8, 7]. 

2. Apply non-deterministic system behavior, 
with the ideas of uncertainty, unpredict-
ability, and deception. E.g., use 
honeypots [26, 32]. 

3. Employ adaptability, diversity, flexibility 
[4, 9], so a system can adaptively decide 
which of the alternative executables it 
runs.  

4. Use appropriate military principles for 
defensive or even offensive actions [22]. 
Among the candidate principles are: 
defense in depth; use of spies, 
deception, surprise; and counter-
attacking (when allowed by law).  

5. Apply biologically-inspired principles, 
such as autonomic computing [3], 
including self-configuring, self-healing, 
self-optimizing, and self-protecting. 

4   ANALYZING  
FRAUD VULNERABILITIES  

4.1   Fraud and Trust  

Fraud involves abuse of trust [10, 39]. A 
fraudster strives to present himself as a 
trustworthy individual and friend. In a clear 
way, the more trust one places in others, the 
more open or even careless one tends to 
become in relationships with them.  This 
results in becoming much more vulnerable 
(with the possibility of experiencing more 
harm). Fortunately, vulnerabilities are not 
automatically exploited but create only a 
potential for fraud.  Only misplaced trust 
may end up being exploited. 
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4.2   The Nature of Fraud Vulnerabilities   

Vulnerabilities create an opportunity for 
fraud. E.g., if Bob learns that Alice has a 
new account but is not using it, he can 
break in and use it. 

While stealing is a singular act, fraud 
might be a series of acts being repeated 
over and over again as long as the victim is 
unaware of these acts or of their 
perpetrator.  

Summarizing, fraud has opportunistic, 
serial and covert nature. (The serial nature 
encourages to model fraud as nested 
transactions [28].) 

4.3   Categorization of Fraud 
Vulnerabilities  

Fraud vulnerabilities can lead to recurring 
attacks and increasing damage in the 
enterprise. They appear during the design, 
implementation, and deployment stages of a 
system’s lifetime. 

Taxonomies of fraud vulnerabilities for 
each stage facilitate gaining a deep insight 
into the realm of vulnerabilities. The 
taxonomy can be used by a formal model to 
reason about characteristics of 
vulnerabilities, and to eliminate some of 
them. Good fraud vulnerability taxonomy 
can guide system design and 
implementation, and facilitate avoiding and 
tolerating fraud attacks in deployed systems. 
In particular, a proper vulnerability 
categorization underlies analytical and 
experimental methods for assessing the 
system-wide impact of vulnerabilities. 

Causes of fraud vulnerabilities include the 
following categories of causes: (a) location-
related, (b) rush-related, (c) mobility-related, 
and (d) software-related (cf. [6] for more 
details). 

4.4   Elimination of Fraud Vulnerabilities 

Elimination of fraud vulnerabilities is an 
effective way of dealing with fraud. However, 
it is not necessarily the most efficient way.  
Hence, we may need to accept even some 
known fraud vulnerabilities and instead try to 
ameliorate them by analyzing potential 
threats that could exploit them. This is the 
topic of the next section. 

5   ANALYZING FRAUD THREATS 
Efficient methods to assess threats 

resulting from system flaws allow for 
analysis of all kinds of threats, as well as 
evaluation of their potential impacts. The 
assessment precedes building a robust 
threat avoidance/tolerance mechanism for 
handling fraud threats due to known or even 
unknown fraud vulnerabilities. 

Also in this case proper fraud threat 
categorization facilitates the analysis. 

5.1   Fraud Threats as Subcategory of 
Security Threats 

Fraud threats can be viewed as a special 
subcategory of general security or privacy 
threats that have a few salient features.  
First, a fraudster is usually well known to the 
victim whose trust he first gains and then 
abuses. In contrast, a “generic” attacker is 
usually not as closely related to a victimized 
system as a fraudster to his victim.  This is 
true even in case of perpetrators of “generic” 
insider attacks. 

Second, the goal of a fraudster is to 
benefit himself and not to hurt the system. 
Unlike a malicious attacker, fraudster does 
not plan to disrupt or destroy the system that 
he exploits. This is similar to the relationship 
between a clever parasite and the organism 
on which it feeds. Negative consequences of 
fraudster’s actions are only unavoidable side 
effects. 

Third, once a suspicion of a fraud threat 
arises and becomes known to the fraudster 
who is still not identified, the fraudster 
usually moves to prey on another victim. In 
contrast, when a suspicion of a malicious 
attack threat arises and becomes known to 
the attacker, the threat does not vanish: the 
attacker will probably just use different 
venues of attack without changing its object. 

5.2   Fraud Attacks as Subcategory of 
Security Attacks 

Similarly, materialized fraud threats, that is 
fraud attacks, can be viewed as a special 
subcategory of general security or privacy 
attacks, distinguished by a few salient 
features.  First, fraud is often committed 
over a period of time, if not detected, even 
over months or years. Many other security 
attacks occur over a relatively short time 
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span even though attack preparation can 
also be surprisingly patient and slow. 

Second, a successful fraud requires 
keeping secrecy. The longer it is kept the 
better for the fraudster, who can repeat or 
escalate his fraud. In contrast, an attacker 
often wants her exploits to be known to the 
general public (for fame, intimidation, etc.).  
Even if she does not want it, due to very 
visible impacts of her exploits, she often 
cannot conceal the attack effects. 

5.3   Other Fraud Threat Features and 
Types 

Fraud often occurs as a malicious 
opportunistic reaction, triggered by a 
careless action. In other words, quite often 
people do not plan fraud but commit it when 
tempted by a vulnerability revealed to them. 
When the vulnerabilities become known to 
recidivist fraudsters, the risk of becoming 
a fraud victim rises sharply. 

Fraud escalation seems to be a natural 
phenomenon.  A fraudster, maybe reacting 
to an opportunity, defrauds five dollars.  
Next time, encouraged by the ease of the 
act, he might defraud a much more 
significant amount. 

Gang fraud threats can be especially 
damaging since they involve a group of 
collaborating fraudsters (cf. [6] for more 
details). 

There exist environments contributing to 
fraud threats, such as the ones with fuzzy 
assignment of responsibilities between 
participating entities, be they human or 
artificial (cf. [6]). 

5.4   Need for Fraud Threat Assessment  

Fraud threats resulting from system flaws 
should be assessed at each stage of system 
lifetime by efficient methods.  A good 
taxonomy facilitates this analysis and further 
investigation of threats. It is important to 
notice that a comprehensive assessment of 
fraud threats may identify even unknown 
fraud vulnerabilities, not identified by fraud 
vulnerability analysis. 

A threat analysis precedes 
developing robust threat 
avoidance/tolerance methods, mechanisms, 
and tools.  Designers and implementers of 
computer systems need them at the 
development time stages of system life 

cycle. Similarly, system administrators and 
maintenance staff need them at the post-
deployment time stages (after the system is 
deployed). 

6   FRAUD THREAT AVOIDANCE 
 AND TOLERANCE  

Detection of fraud vulnerabilities and fraud 
threats is a prerequisite for or a component 
of fraud avoidance and tolerance. In 
addition, detection of fraud attacks might be 
a prerequisite for or a component of  fraud 
tolerance (but not for fraud avoidance since 
preventing fraud attacks is assumed for 
such an approach). 

6.1   Fraud Threat Avoidance 

The problem of threat avoidance is most 
important at the development time for 
computer systems.  The situation is 
exacerbated by the inherent fraudsters’ 
advantage: once a typical system is 
deployed, its overall structure and its many 
functionalities are pretty much frozen (at 
least until the next major system release).  
Fraudsters have a lot of time to study and 
probe the system to discover its 
vulnerabilities, and then to exploit them. 
Unless the system has built-in capabilities 
for fault and intrusion tolerance, the only 
weapons in developers’ hands are security 
patches and point releases fixing bugs (non-
structural and of limited scope). 

The designers should therefore be very 
careful what they let out of their door. Yet, 
too often designs of even critical systems 
consider threat avoidance to an insufficient 
degree, making them just too vulnerable to 
even relatively unsophisticated attacks.  

The promising known fraud prevention 
techniques include cryptography, separation 
of duty policies, and state transition 
approaches. 

6.2   Fraud Threat Tolerance 

The goals for fraud threat tolerance are 
analogous. In addition to arming the system 
for threat tolerance at the development time, 
good algorithms and tools must be provided 
for post-deployment support. This includes 
the techniques analogous to the ones used 
for fault tolerance in the field of computer 
reliability.  
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6.3   Post-deployment Detection of Fraud 
Vulnerabilities and Threats 

In addition to fraud vulnerability and threat 
analysis done at the system development 
time, we must ensure that deployed systems 
are sub-jected to detection of fraud 
vulnerabilities and threats also after 
deployment. This can be done by system 
testing, analogous to reliability testing. 

Costs of testing should be weighed 
against the expected fraud losses and future 
benefits, since testing should enhance future 
system performance. Unfortunately, 
irrationally extensive fraud protection 
measures might be an irrational—albeit 
psychologically explainable—reaction by an 
entity just recently defrauded. 

Exhaustive fraud vulnerability or threat 
testing might not be a practical approach, so 
sampling could be used (cf. [6] for more 
details). 

6.4   Detection of Fraud Attacks 

After system deployment, in addition to 
identifying fraud vulnerabilities or fraud 
threats (discussed above), fraud threat 
tolerance may require tests for detecting 
fraud attacks. 

The two main approaches for fraud 
detection are:  profile-based anomaly 
detection and rule-based fraud detection. 

7   AN ARCHITECTURE FOR 
SWINDLER DETECTION 

In the preceding sections we proposed an 
approach to analyzing fraud vulnerabilities, 
fraud threats and fraud attacks. In this and 
the next section, we present a system for 
swindler detection, and an analysis of its 
critical algorithm. 

The major challenge for swindler detection 
is to react to a suspicious action or 
cooperation that may lead to a fraud. Three 
approaches were considered: (1) detecting 
an entity’s activities that deviate from 
legitimate patterns; (2) constructing state 
transition graphs for existing fraud scenarios 
and detecting frauds similar to the known 
ones; and (3) discovering an entity’s 
intention based on its past behaviors. The 
first two approaches are also used to detect 
frauds conducted by impersonators. The last 

one is applicable only for swindler detection. 
An architecture utilizing all three 
approaches, briefly described in the next 
section, was proposed in Reference [11]. 

7.1   Design Considerations and Top-
level Architecture 

The design of the architecture was based 
on the following assumptions:  

• A deviation from the usual pattern of an 
entity behavior may indicate a fraud. 

• A similarity between an entity’s current 
activity and a known fraud scenario 
warns that the same fraud may be 
occurring again. 

• Analysis of an entity’s behaviors in a 
relatively long period may reveal entity’s 
bad intentions that it tries to mask by 
blameless activities. 
Our swindler detection architecture 

consists of four components:  
1. Profile-based anomaly detector monitors 

current activities for suspicious actions 
based upon the established patterns of 
an entity’s behavior. It outputs the fraud 
confidence indicator showing the 
probability of a fraud. 

2. State transition analysis component 
builds for current activities a state 
transition graph that provides so called 
state descriptions when a current activity 
results in entering a danger state, which 
may lead to a fraud. 

3. Deceiving intention (DI) predictor 
discovers deceiving intention of an entity 
based on entity’s history and satisfaction 
ratings, that is, in contrast to the previous 
two components it investigates only 
entity’s past behaviors. DI-confidence 
indicator is a measure that characterizes 
the belief that the target entity has 
a deceiving intention. It is a real number 
ranging over [0,1], with the higher values 
indicating stronger beliefs. 

4. Decision-making component takes as its 
inputs the outputs of the three preceding 
components, namely, fraud confidence, 
state description, and DI-confidence. It 
assists system administrators in reaching 
fraud alarm decisions, based on the 
predefined policies.  
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7.2   Anomaly Detector Component 

Profile-based anomaly detector monitors 
for a target entity’s activities that deviate 
from established patterns. It consists of 
three major subcomponents:  
1. The rule generation and weighing 

subcomponent applies data mining 
techniques to existing massive amounts 
of entity activity records. From this 
information, fraud rules are generated 
and assigned weights according to their 
frequency of occurrence. Both entity and 
behavior attributes are used in mining 
and weighing fraud rules.  

2. The user profiling subcomponent 
produces the profiling information 
characterizing entities, such as age, 
location and financial status. It also 
captures an entity’s behavior patterns, 
such as how often she buys or sells, the 
price preferences and product choices.  
There are two sets of profiling data, one 
for current profiles and the other for 
historical profiles. In order to reflect an 
entity’s current behavior patterns, the 
current profile set is dynamically updated 
according to behaviors. As behavior data 
grows larger, the decay process is used 
to reduce the data volume.  
This subcomponent also involves rule 
selection for a specific entity, based on 
profiling results and rules. When 
combined with profiling information, a set 
of rules is selected as fraud indicators for 
monitoring a specific entity.  

3. The online detection subcomponent 
retrieves the related fraud rules when an 
activity occurs. It may also need to 
retrieve the entity’s current and historical 
behavior patterns. Each rule is checked 
and a weight for it is produced.  
If a behavior deviation reaches the 
defined threshold, the offending entity will 
be caught. A weight will be output 
according to the rules. The results are 
combined to determine fraud detection 
confidence. 

7.3   State Transition Analysis 
Component 

State transition analysis models fraud 
scenarios as series of states changing from 

an initial secure state to a final compromised 
state. The initial sta-te precedes actions that 
lead to a fraud. The final state is the 
resulting state of committing a fraud. There 
may be several intermediate states between 
them. Actions that cause transition from one 
state to another are called signature actions. 
They are the smallest actions required to 
transition closer to the final state. A fraud 
scenario will not be completed without them. 

This model requires collecting fraud 
scenarios at the beginning and identifies the 
initial and final states. Then, the signature 
actions for that scenario are identified in the 
backward direction. A fraud scenario is 
represented as a state transi-tion graph of 
states and signature actions. 

A danger factor is associated with each 
state. It is defined as the distance from the 
current state to the final state that indicates 
a fraud. If one sta-te leads to several final 
states, the minimum dis-tance is used. For 
each activity, state transition analysis 
checks the potential next states. If the 
maximum value of the danger factors 
associated with these potential next states 
exceeds a thre-shold, a warning is raised 
and a state description is sent to the 
decision-making component. 

7.4   Deceiving Intention Predictor 
Component 

The kernel of deceiving intention predictor 
is the deceiving intention prediction (DIP) 
algorithm [11] that views a belief in 
a deceiving intention as complementary to a 
trust belief. The trust belief for an entity is 
evaluated based on the satisfaction 
sequence < S1, S2, …, Sn>. Sn is the most 
recent satisfaction rating, which contributes 
the α portion to the trust belief. The 
remaining portion, (1 – α), comes from the 
previous trust belief and is determined 
recursively. 

For each entity, DIP maintains a pair of 
factors: the construction factor Wc and the 
destruction factor Wd. If integrating current 
satisfaction rating increases trust belief, then 
α = Wc; otherwise α = Wd. Wc and Wd are 
initialized by the system administrator. They 
satisfy the constraint Wc < Wd so that the 
property of easy-destruction-hard-
construction is assured. This property stems 
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from the fact that more effort is needed to 
gain the same amount of trust than to lose it. 

Wc and Wd are modified when a foul event 
occurs. A foul event is triggered when a 
satisfaction rating is lower than the 
established threshold. Upon a foul event, the 
target entity is put under supervision in the 
sense that entity’s Wc is decreased and Wd 
is increased. 

If the entity does not conduct any foul 
event during a supervision period, entity’s 
Wc and Wd are restored to the initial values. 
Otherwise, entity’s Wc and Wd are further 
decreased and increased, respectively. The 
supervision period associated with an entity 
increases each time when the entity is put 
under supervision, so that this punishment 
lasts longer the next time. In this way, an 
entity with a worse history is treated harsher. 
The DI-confidence is computed as 1 –
current_trust_belief. 

7.5   Decision-making Component 

The decision-making component takes 
fraud confidence, state description, and DI-
confidence as its inputs. It passes warnings 
from state transition analysis to system 
administrators, and displays the description 
of a next potential state in a readable format. 
It computes the expected fraud risk, raising 
a fraud alarm when this risk ex-ceeds the 
corresponding fraud investigation cost. 

8   EXPERIMENTAL STUDY OF 
DIP ALGORITHM FOR 

DECEIVING INTENTION PREDICTOR 

8.1   Three Types of Deceiving Behaviors 

Experimental evaluation of the DIP 
algorithm [11] investigates its performance 
for three types of deceiving behavior 
identified by us: 
1. Behavior with uncovered deceiving 

intentions, where swindler’s satisfaction 
ratings are stably low and vary in a small 
range over time. 

2. Behavior with trapping intentions, where 
a swindler first exhibits intentionally 
blameless behavior to gain 
trustworthiness. This is only a 
preparation for a fraud, which follows. 

3. Behavior with illusive intentions, where a 
swindler exhibits cycles of intentionally 

blameless behavior followed by intervals 
fraudulent actions. The periods of 
apparently blameless behavior are meant 
to cover the dishonest activities and to 
confuse the fraud detection mechanisms. 
This results in cycles of preparation and 
entrapment (in contrast to the previous 
case when one preparation interval 
precedes one entrapment period). 

Representations of these behaviors are 
inputs to the DIP algorithm, which calculates 
for them the value of the DI-confidence 
indicator (which is a real number ranging 
over [0,1] with the higher values indicating 
stronger beliefs). 

8.2   Results 

The experimental results can be 
summarized as follows [11]: 
1. For a swindler with uncovered deceiving 

intentions: Since the possibility that the 
swindler conducts foul events is high, he 
is under supervision most of the time. 
The construction and destruction factors 
become close to 0 and 1, respectively, 
due to repetitive punishment for foul 
events. The trust values at 0.1 are close 
to the minimum. The DI-confidence is 
around 0.9. 

2. For a swindler with trapping intentions: 
The DIP algorithm responds quickly to 
the sharp drop of the satisfaction rating 
when swindler ends the preparation 
phase and enters the entrapment phase. 
Increasing DI-confidence from 0.22 to 
0.76 takes only 6 ratings. 

3. For a swindler with illusive intentions: DI-
confidence increases when the swindler 
ends the preparation phase of a cycle 
and starts an entrapment. Similarly, DI-
confidence decreases when the swindler 
ends the entrapment phase and enters 
the “honest” phase of a cycle. Still, the 
DIP algorithm is able to catch this smart 
swindler because her DI-confidence 
eventually increases to about 0.9. This 
demonstrates that an effort to cover 
periods of fraudulent activities with 
periods of good behaviors is less and 
less effective with each repetition of the 
preparation-entrapment cycle. 
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9   CONCLUSION 
We discussed relationships between fraud 

vulnerabilities, fraud threats, fraud attacks, 
and trust.  We analyzed fraud, identifying the 
salient features of fraud attacks, which make 
them a separate category within the realm of 
security attacks. We proposed architecture 
for swindler detection consisting of four 
components: profile-based anomaly 
detector, state transition analysis, deceiving 
intention predictor, and decision-making 
component. The deceiving intention 
predictor (DIP) algorithm is the critical 
element of the architecture. The DIP 
algorithm predicts fraudulent intentions. Its 
experimental evaluation shows that it is 
effective in uncovering different fraud 
strategies, from naive to smart ones. 
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